2022 R1 What's New: Ansys NVH Solutions

- NVH Toolkit
- Maxwell Mechanical Integration
- Couple Field Systems Enhancements
- Mechanical Acoustics Enhancements
- Ansys LS-Dyna Acoustics Enhancements

NVH Toolkit

NVH Toolkit: MAC Calculator

- The MAC Calculator result object computes the Modal Assurance Criterion (MAC) between a Modal Analysis (rst file) and a test (unv file). It allows you to:
 - Mode selection and flip to order them
 - Mode pairing to identify matches
 - Node selection and position tuning of unv nodes
 - UNV model orientation (Coord. System, Rigid Body Transformation or 3 Node Alignment)
 - Cyclic Optimization specific workflow
 - Interactive MAC Table
 - Interactive side-by-side Mode Animation

Extensi	ons Manager	_		<
Loaded	Extensions	Type	Version	^
	keywordmanager	Binary	1.0	
	MechanicalDropTest	Binary	2.0	1
	MechanicalEmbeddedDesignLife	Binary	2022.1	1
	MotionLoads	Binary	2.2	
V	NVHToolkit	Binary	2022.1	
	Offshore	Binary	2022.1	
	optiSLang 22.1.0.2549	Binary	22.1	
	SinterSetup	Binary	2022.1	
Search			Clo	se

NVH Toolkit: MAC Calculator – Comprehensive UI

2D MAC Table

Maxwell – Mechanical Integration

Maxwell: Mechanical Coupling

 Remote Forces / Moments can be generated from Maxwell exported file which eliminate the need of having both Maxwell and Mechanical models in the same Workbench project

Couple Field Systems Enhancements

Coupled Field Static Analysis

 Piezoelectric coupling and Acoustics physics is supported for Coupled Field Static analysis

Physics Region and Analysis Settings

- PML settings are supported for respective Acoustics physics in the Physics region object
- Voltage and Charge convergence supported on Analysis settings
 - Program Controlled

PML Region Attached to Interior Region

PML (grayed layer)

Symmetric Plane

Radiator

Interior Computational Domain

- On

2

- Remove

D	etails of "Physics Region" 👓	▼ ₽ □ ×
=	Scope	
	Scoping Method	Geometry Selection
	Geometry	All Bodies
Ξ	Definition	
	Structural	No
	Acoustics	Yes
	Thermal	No
	Electric	No
	Suppressed	No
63	Acoustic Domain Definition	
	Artificially Matched Layers	Off
	Element Morphing	Program Controlled
60	Advanced Settings	
	Reference Pressure	2.e-005 Pa
	Reference Static Pressure	1.0133e+005 Pa
L	Fluid Behavior	Compressible

	🗄 🛶 🍘 Coupled Field Static (A5)								
	T=0 Initial Physics Options								
	Analysis Settings								
D	Details of "Analysis Settings" 🗸 🗖 🗙								
+	Step Controls								
+	Solver Controls								
+	Restart Controls								
-	Nonlinear Controls								
	Newton-Raphson Option	Program Controlled							
	Force Convergence Program Controlled								
	Moment Convergence Program Controlled								
	Displacement Convergence	Program Controlled							
	Rotation Convergence Program Controlled								
	Line Search	Program Controlled							
	Stabilization	Program Controlled							
	Voltage Convergence	Program Controlled							
	Charge Convergence	Program Controlled							
+	Advanced								
+	Output Controls								
-	Damping Controls								
	Ignore Acoustic Damping	Yes							
+	Analysis Data Management								

Symmetric Plane

Boundary Conditions

• Electric and Acoustics boundary conditions are supported

• Electric results and probes are supported

Pre-stress Coupled Field Analysis Enhancements

• Pre-stressed Coupled Field Modal and Pre-stress Coupled Field Harmonic (full harmonic) is supported by linking to upstream a Coupled Field Static analysis

Pre-stress Coupled Field Enhancements

- The physics combination which can be performed in Pres-stress Coupled Field analysis are:
 - Structural Acoustics
 - Structural Electric with Piezoelectric coupling
 - \circ $\,$ Acoustics with Piezoelectric coupling $\,$
- Physics region specified in the upstream coupled field static analysis will be automatically selected on downstream linked environment.
- Thermal physics selection in the coupled field static analysis will not support pre-stress workflow
- Linking on Coupled Field Modal and Harmonic can be done by selecting the pre-stress environment on the Initial conditions

Boundary Conditions and Results for Pre-Stressed Analysis

Pre-stressed Coupled Field analysis supports these boundary conditions

Pre-stress Coupled Field Modal

- Acoustic Boundary conditions

Pre-stress Coupled Field Harmonic

- Inertial Load, FE Loads
- Acoustic Boundary conditions
- Electric: Voltage and Voltage Coupling

<u>Results</u>: All results supported for standalone analysis is applicable for pre-stress case

\$	()		Q			@ Force @ Moment		☞ Fixed	ð,		- \	
Inertial *	Acoustic Excitations *	Acoustic Loads *	Acoustic Boundary Conditions *	Acoustic Models *	Loads	Ressure	Supports	Displacement	Conditions *	Direct FE*	Voltage	Voltag (Groun

Imported Heat Generation Load from Coupled Field Harmonic

- Loss due to damping in the upstream Coupled Field Harmonic analysis can be imported as Heat Generation load in Transient Thermal analysis by linking the solution cell of Coupled Field Harmonic to setup of Transient Thermal analysis
- The losses are only considered from the coupled structural-electric bodies with Piezoelectric coupling and is applicable for dissimilar meshes. The source frequencies is split over equal time intervals in the transient thermal analysis when All option is selected from Worksheet of Imported Heat generation object

Acoustics Enhancements

PML for Modal Acoustics [2022R1]

- Modal Acoustics PML
 - Resonance in a cavity with small apertures

1						
	Eige	en frequei	ncie	s in io	leal	case
	SET	TIME/FREQ	LOA	D STEP		
	1	300.00	1	1	1	
	2	600.02	1	2	2	
	3	612.28	1	3	3	
	4	681.82	1	4	4	
	5	857.27	1	5	5	

Eigen frequencies with PML

SET TIME/FREQ LOAD STEP 1-0.19787 1 1 1 2 112.82 1 1 1 3-0.19787 1 2 2 4 -112.82 2 2 5-0.93757E-01 3 1 3 6 361.26 3 3 1 7-0.93757E-01 4 8-361.26 4 4 9-0.48481E-03 5 5 10 614.58 1 5 5

Eigen frequencies of shell+FSI+PML

SET TIME/FREQ LOAD

1-0.22365E-01		1		1		1
2 <u>111.30</u>	1		1		1	
3-0.22365E-01		1		2		2
4 -111.30	1		2		2	
5-0.23790E-01		1		3		3
6 <u>111.30</u>	1		3		3	

PML for Transient Acoustics [2022R1]

- PML/IPML in transient Truncate FEM domain with Perfectly Matched Layers (PML) for outgoing waves
 - 3D rectangular PML for high absorption rate

- 3D Irregular PML for better performance with fewer elements

PML for 2D piezoelectric elements in harmonic [2022R1]

• Piezoelectric waveguide

Ansys LS-Dyna Acoustics Enhancements

Acoustic Spectral Element Method (SEM)

- It is a sub-parametric FE
- The shape functions for the geometry are of a lower order than the interpolation functions for the element pressure
- The interpolation functions for the pressure employ Legendre polynomials of orders 2→15
- Element integration is with a Gauss-Lobatto-Legendre rule. Element dof are at those integration points.

*CONTROL_ACOUSTIC_SPECTRAL

Acoustic spectral element method – application 1

Acoustic SE is capable of high accuracy with manageable resource requirements, and so is well suited to high frequency and ultrasonic applications where the wavelengths are often short relative to the dimensions of interest:

- Ultrasonic sensors
 - Autonomous driving / parking
 - Fingerprint recognition

Acoustic spectral element method – application 2

• Medical imaging

USCT - Ultrasound Computer Tomography

- Tissue in water
- Ultrasonic pulse from one transducer
- Scattered signal measured on all others
- Each transducer takes a turn

200 KHz pressure pulse

Solution for 200 µs (57,967 steps) 11 hrs 26 min wall time (112 cores) USCT 200KHz Mor L 'ime = 0 sosurfaces of Press min=0, at elem# 1 -7.800e+0 2 Lx

6,048,000 N=5 SE hexahedra

757,442,101 equations

New boundary / load conditions for acoustic analysis

Feature	Keyword
Structural Coupling F	*boundary_acoustic_coupling_mismatch
Structural Coupling - I _{FS}	*boundary_acoustic_coupling_spectral
Weak Structural Coupling F	*interface_acoustic
Weak Structural Coupling - T _{FS}	*boundary_acoustic_interface
Prescribed Boundary Motion - Γ_U	*boundary_acoustic_prescribed_motion
Prescribed Boundary Pressure - Γ _P	*boundary_acoustic_pressure_spectral
Rigid Boundary - Γ _R	This is a natural condition
	*boundary_acoustic_impedance
Impedance Boundary - Γ _z	*boundary_acoustic_impedance_complex
	*boundary_acoustic_impedance_mechanical
Absorbing Boundary - Γ _{NRB}	*boundary_acoustic_non_reflecting
Zero Pressure Boundary – Γ ₀	*boundary_acoustic_free_surface
Linear Wave Boundary – Γ _w	*boundary_acoustic_free_surface
Internal Point Source – Q	*load_acoustic_source
Incident Wave Point Source – P _{inc}	*load_acoustic_source

New acoustic material models

*MAT_ACOUSTIC_COMPLEX

Complex, frequency-dependent density and bulk modulus

*MAT_ACOUSTIC_DAMP

Fluid damping defined by volumetric drag coefficient for direct steady state vibration analysis, or viscous damping defined for explicit transient acoustic analysis

*MAT_ACOUSTIC_POROUS_DB

Regression model for porous acoustic media of Delany-Bazley and the coefficients of Allard-Champoux

SSD with multiple load cases

*FREQUENCY_DOMAIN_SSD_SUBCASE *DATABASE_FREQUENCY_..._SUBCASE

Benefits:

- Save extra keyword input reading
- Save extra initialization
- Save extra MPP decomposition
- Other savings

CJ	*FF	EQUENCY D	OMAIN SSD	SUBCASE					
	\$#	mdmin	mdmax	fnmin	fnmax	restmd	restdp	lcflag	relatv
		1	100	ο.	2000.	0	0		
	\$#	dampf	lcdam	lctyp	dmpmas	dmpstf			
CE		0.01							
JE	\$#						nout	notyp	nova
	* #								-1
F	\$#	caseld	title The fire	- + 1 di					ntoad
	cas	iei mid	ine tir:	st loading	, case	1 - 1	1-0	1-0	∠ امنیں
	\$#	nia	птур	аот	vad	LCI	LC2	LC3	Vid
subcase 1—		131	0	3	0	100	200		
	##	180		3	0	101	201		ml and
	\$#	caseid	The see	and leadin					ntoad
	cas ##	ie∠ nid	ine seco	ond toadin def	ig case	1.01	1.00	1.00	ui d
subcase 2—	\$#	110	ntyp		vad	101	201	103	VIG
	c -#	cosoid	+i+lo	5	0	101	201		pland
	φ π 6.26	Caseru	The thi	rd loading					ncoau
	cas ##	nid	ntyp	dof	, case	101	1.00	1.5	vid
subcase 3—	φ π	258	ncyp	3	vau	102	202		VIU
	*DA	TABASE ER			SSD SUBC		202		
	¢#	fmin	fmax	nfrea	fsnace	lcfred			
subcase 1 —	Ψ"	10	140	14	ropace	cerreq			
subcase 2 —		10.	140.	131					
cubcaco 2		10.	140.	261					
subcase 5	*DA	TABASE FR	EQUENCY AS	CII ELOUT	SSD SUBCAS	ε			
subcaso 1 —	\$#	fmin	fmax	nfreq	fspace	lcfreq			
		10.	140.	14	·				
subcase 2 —		10.	140.	131					
subcase 3 —		10.	140.	261		-			
	*DA	TABASE_FR	EQUENCY_BI	VARY D3SSE) SUBCASE				
	\$#	binary							
		1							
subcase 1 —	\$#	fmin	fmax	nfreq	fspace	lcfreq			
		10.	140.	14					
subcase 2 —		10.	140.	27					
subcase 3 —		10.	140.	131					

Thank you for your attention

